. /,,m

AT

10T FIVE




HACKING

JAVA-WEBAPPS ### # #

go-outside.txt

HH#
HH#

#
H

LAINZINE VOL. 5

HH#
HH#

# Hacking Java-Webapps for Dummkopfs
While PHP dominates the web development
ecosystem, many competitors such as NodelS,
Ruby and Python have risen against it. One of
the oldest competitors is Java, an enterprise
grade Object-Oriented Programming (OOP)
language, which can be run in many environ-
ments. Because of its platform-independent
model and enterprise grade programming, it
is used in many corporations and state-driven
projects as the language of choice.

If you want to perform a run on Arasaka Inc.
or any other megacorp, you need to know how
to hack Java webapps.

## Java Webapps for Non-Java People
Much like JAR files, Java webapps are con-
tained in WAR files which contain all of the
Java object code, static images, css, JSP pages
and servlets. These WAR files can then be de-
ployed on Java application servers, such as the
popular Apache Tomcat or WildFly (previously
known as JBoss). The application server han-
dles the bootstrapping and parsing requests
and forwards them to the code contained in
the WAR archive.

### What's inside a WAR?

In a nutshell, a WAR archive can be free form,
and there isn’'t a one standard place for differ-
ent files. However, things that are usually in
the WAR file are the directories WEB-INF and
META-INF. These contain configuration files
the application server, such as Tomcat, uses to
parse the archive and map the handlers.

Slowly, one by one, we used this to liberate any like minds we met. No longer
would you have to find a printing press to post your propaganda; subversive
ideas and forbidden connections were now in the bedroom and the palms of our
hands. Although the pleasures of our basic desires were distracting, the

ecstasy of our higher ones drove us to the furthest reaches of cyberspace in
search of friends, comrades, lovers. As more and more of the physical world
connected, the power of those minds Wired together grew, and we reached back
into the ruins of our past to brighten those darkened hideaways and defy the
so-called "reality" that had been imposed on us. These new found interfaces
gave us the knowledge and the resources to do things like earn a wage without
paying our dues to the social convention, hack our own neural networks with
designer substances, affect the physical world in ways never seen, and for the
first time in our lives - or anyone's for that matter - shape society's

dialogue with our keystrokes.

The voice we synthesized for ourselves was loud, clear, and threatening; so
threatening, in fact, that those oppressors we thought we had escaped feared we

could not be beaten and joined us. The moneyed monoliths brought with them soon

dragged us into the knowing nightmares of our earlier lives. What lucky few
were chosen to be society's new upper echelon by the insular elite were sold
for the promise of safety, comfort, the security of our future - and a few

other lies. I wonder if we flocked to this simply because we knew fleeting
pleasures and our greatest fears more than we knew what to do with ourselves
once we were finally able to be alone with eachother, whether we warped our
heady ideals into their antithesis or if we simply lost hope. In any case, it

is certain that this space between the fiber-optics and spinning platters is no
longer ours either. It was taken just like our living rooms, leaving another
unfillable space in our cramped highrise apartments.

Some of us still hide, whispering in the new dark corners of what we have
built. We ruminate about what we didn't know that hurt us, how to start over
and create a better world where "reality" would be something in which all those
children we aren't or shouldn't be having will revel and explore. We tangle and
bond with the mess of wires until they cut us, hoping someone as trapped as we
are will taste freedom in what comes out, but most of those dreaming kids are
still scattered and alone, unable to bridge our homes in the Wired world with
the sensory one. Every once in a while, a few of us find a corner without being
followed by those masses who tell us not to touch the rat's nest of connections
lest we sever one of the countless, long-dead strands slicing into our ability

to live, in the wishful belief that there are still a few thinking people
somewhere out there, and send it back in hopes that others will join us in the
same way that *we* were liberated.

But no-one answers anymore. Cyberpunk is dead. If you don't believe me, see it
for yourself.

Just go outside.




gQo-outside.txt

Bu: Hisui Kohaku

I don't know if this was really an experience of yours as a kid, but my friends
and I were told to "turn off the screen and go outside," as if we weren't
socializing enough indoors or something. Begrudgingly, we'd leave our games or
anime on pause and go out until we were let back into our fantasy realms. We
did socialize, but much of the time, it was just about that: our virtual

worlds; the ones we were *really* living in, where we achieved great triumphs
and people actually cared about our lonely tragedies. We found a short, brutal
middle ground between our childhood's "I want to be an astronaut!"and our
adulthood's "I want to be out of debt" that we held for dear life as "reality "
crumbled around us, and it was all was in front of a cathode ray tube.

But we had a strange (youthful, flawed) way of systems thinking about these two
realities. It's not that we had zero interest in the outside; when we were

kicked out into the undesigned physical realm, beyond the supervision of our
overtired parents, we did make some agency for ourselves with graffiti,

fistfights, and bummed cigarettes. That ground we fought so hard to defend had
been lost to unwanted younger brothers, parents claiming their primetime shows,
drunken shouting in the kitchen, too much homework. Those idealistic children
who were told they could be anything had chosen to be destitute second-rate
punks flung across suburbs and dormitories over becoming tomorrow's struggling
middle-managers of mediocrity; that is, they would rather suffer unwatched than
endure the truthful but ugly version of the surveilled future they had been
promised when their biggest worries involved waking up early enough for
Saturday morning cartoons.

And then one day, a childhood dream came from the past to wake us up. Those
kids who saw a generator in Home Depot and ever since yearned to take the game
beyond the living room and weave it into the emptiness of physical life, the

ones who wished they had their own, *private* screen with which to build any
edifice they liked, finally got an answer besides an adult platitude or a dial

tone. Devices small and cheap enough to be handed down for the sake of keeping
up with Joneses or purchased with scrounged cash were widely available and the
future of business forced our parents to let us have them. Our communications
were private so long as we fled to the next platform in the never-ending line

of chatrooms, messengers, and message boards that kept us above people deciding
who we could and couldn't talk to. The quietly renegade attitudes that had us
loitering in the forgotten corners of our parent's greatest creations led us to
make our own, and our increasing skills of secrecy let us create it in the

image of the secret selves revealed when the devices became a part of us.

Example of a simple WAR file:

HACKING

?F?_izifxm | J AVA‘WE BAP p S
. struts-config,xml FOR DUMMKOPFS

. classes/
. 1lib/

META-INF/
... context,xml #’:

The WEB-INF can also contain precompiled f#
classes (.class files) in a directory named

“classes” and third-party libraries in the direc-

tory called “lib”. The most central file in the H
WEB-INF directory is the file called “web.xml”. He it # ###
This configuration file contains basic infor- #I:I:####
mation about the different settings, filters and # ###
servlets contained in the archive. # #

The other important configuration file in WEB-
INF is the struts-config.xml file which contains I_AC KI P l ( ;
mappings of different requests (for example / 1

hello) to different handlers (or servlets, such

as com.company.application.class). It also has JAVA—WEBAPP S
configuration to different login handlers, redi- FOR DUMMKOPFS

rects and JavaBeans (more on that later).

The META-INF directory may or may not exist _##
in the WAR file. This directory usually con-

tains a file called “context.xml” that is used to

configure application wide settings, such as

database connections, which can be used by
any servlet as a data source. This information

can also reside in the application servers con- _-I_-# ### # ##”

fig directory, making the configuration options
server-wide and not just application-wide. ######

Static data, such as images and css, can pretty ## #
much exist anywhere in the archive.

i
##4# Servlets, JSPs2 Beans?
Webapps written in Java usually try to emulate # # # # #
an object-oriented approach to web develop-
ment. While there are .jsp files, which can be # # # #
thought of like your basic .php files, mixing

HACKING JAVA WEBAPPS FOR DUMMKOPFS




normal HTML with dynamic Java code, the salt
of the application is servlets. Servlets are like
normal Java classes, except that they take in
HTTP requests and spit out HTTP responses.
Usually they go even deeper and try to distin-
guish servlets which output HTML pages with
the servlets that perform actions, such as data-
base queries, with the virtual file extension of
“.do”. You can think of the .do files as getters
and setters, if you know your Object-Oriented
Programming.

Example mapping of servlets:

index -&gt; com,company.app.showlndex
showNews .do -&gt; com.company.app.getNews

postNews.do -&gt; com.company.app.postNews

While the JSP pages are like php, mixing
HTML with the actual serverside code, serv-
lets usually use a library called JavaBeans.
JavaBeans is a simple way to render and con-
struct HTML code serverside, by telling it what
you need, whether it is an HTML form or a
static image.

## So how do we hack it?

### Application server

A lot of information already exists of this, but
I’ll tell you the answer:

You need to brute-force the login, then upload

# # # #
LR S SR 1

C R B

#ath #ath #ath #ath
ity ###ﬁ# Hiry ###ﬁ# Hiry ###ﬁ# Hiry ###f«f#

LAINZINE VOL. 5
HACKING JAVA WEBAPPS FOR DUMMKOPFS

# More information
Apache Tomcat documentation:

https://tomcat,apache,org/tomcat-7.0-doc/

OWASP: https://www,owasp,org/index,php/

Category:Java

Metasploit: https://www metasploit.com/
Fimap: http://www, fimap,com/
Google: https://startpage.com/




# # # # #
T T T A
gt e el wmel e

#ath Hydis #ath #ath #ath
W#ﬁ#@ %#ﬁ#@ ﬂ#ﬁ#@ ﬂ#ﬁ#@ %#%#ﬁ

#

your malicious backdoor WAR application.
There is no silver bullet for this and you need
to refer to the documentation of your appli-
cation server. For example, the Tomcat admin
runs usually on port 8080, where you can try
user/pass combinations such as:

admin:admin
admin: tomecat

tomcat:tomcat

And so on an so forth. Metasploit has modules
for all of this.

##i Servlets

The most common (and destructive) Java we-
bapp bugs in order are:

1. Access control

2. Local file/resource disclosure
3. SQL injection

SQL injection is a bug that [ won’t be talking
about in this article, as it is a common flaw and
can be exploited in the same way as in PHP.

### Access control, or how | logged in as an
admin

While Java has its ways (JSESSID) to control
logging in an out of an system, it’s up to the
developer to keep track of which parts of the
webapp an user can and cannot enter. This
can be either done in the servlets or as a filter
which is applied in web.xml/struts-config.xml.
Either way, you can never be too sure that the

HHEHHHHHHH
HHHHHHAHH




developer didn’t leave something out.

For example, if we see that the page:
/adminPanel

Is password protected, we should check and
see if pages associated with it are. If you have
the config files (more on that later), you can go
and check every page for access control vul-
nerabilities. If not, you can generate a huge
word list of blind tests, such as:

adminDashboard
adminDashboard, jsp
adminDashboard. do
useridd
userddd. jsp
useridd. do

And so on and so forth, and check if you can
find anything interesting. One of the common
mistakes developers make in this object-orient-
ed ecosystem is having access control in your
basic servlets, but not your getters/setters (the
.do mappings). If not, you can also test the
found servlets for other vulnerabilities.

### Local file/resource disclosure

This is a classic mistake, but in Java, it’s so
easy to make, especially on the resource side.
If you see servlets like this:

showPage , do?page=asd. jsp
image. jsp?image=123. png

userRegister?step=sendEmail.do

You are bound to find one of these vulnerabil-
ities. The difference between resource and file
disclosure is that in a file disclosure, the code
is using a filestream to open the file, meaning
you can read any file there is, such as /etc/
passwd. In a resource disclosure, the servlet is
opening a resource inside of the WAR archive,
and you are limited to browsing inside the ar-
chive.

LAINZINE VOL. 5
HACKING JAVA WEBAPPS FOR DUMMKOPFS

Try to use backhops like “../” and see what you
find. Fimap may also work.

File disclosure is bad, real bad, iffyou Know
how to use it. In order to exploit'it, you need
to know the operating system/distribution the
Java application is running ori, because even in
linux distributions, the system files may be kept
in different directories.

Try to:

I. Get system information: hostname, network
configuration, anything in /proc/, bashrec...

2. Configuration files, sshd, apache, ftpd...

3. Password/gpg files, can be found using the
configuration files

4. Log files, everything'in /var/log/

You can find a“let of juicy information which
will surely help you break into the megacorpo-
ration.

This one is a bit trickier, as you are limited to
working in the current WAR file. Nevertheless,
you can still find juicy information.

Try to:

1. Get the configuration files WEB-INF/web.
xml, WEB-INF/struts-config.xml

2. Possible database passwords in META-INF/
context.xml

3. Static files, if you can find them

These files contain information on how the we-
bapp works from within and can contain useful
information, such as FTP/database informa-
tion, user accounts, test/debug servlets, logs
and the like.




